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a b s t r a c t

The physical relevance of an improved front-capturing 1-Fluid method is investigated considering the
behavior of either incompressible or compressible gas bubbles driven by buoyancy in a two-dimensional
framework. Through the coupling of a VOF–PLIC technique and a smoothing function of adjustable thick-
ness, the Smooth Volume of Fluid technique SVOF is intended to capture accurately strong interface dis-
torsion with large density and viscosity contrasts between phases, combined with the front-capturing
automatic treatment of interface rupture or reconnection. The fundamental idea lies in using the regular
VOF–PLIC technique, while applying a smoothing procedure affecting both physical characteristics aver-
aging and surface tension modeling. A thorough assessment procedure is achieved comparing the present
method, front-tracking simulations and experiments from Bhaga and Weber that characterize the shape
and velocity of single gas bubbles rising into liquid columns. A series of 200 SVOF simulations was nec-
essary to provide a unique set of smoothing and averaging parameters available for any kind of bubble
that is stable in an axisymmetric framework. The front-capturing strategy greatly eases the extension
to gas injection applications as there is no micro-management required during interface coalescence or
break-up, and no volume correction either. Finally the robustness of the 1-Fluid SVOF method is demon-
strated in two-dimensions, in the case of compressible or incompressible gas injection into cold metal
alloys where the density ratio between phases is greater than 3500.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Multiphase systems modeling is concerned with a very wide
range of industrial and environmental applications. The present
work was motivated by the need for predicting the efficiency of
gas-jet penetration and break-up in molten metals. Such systems
are extremely aggressive and opaque to most experimental investi-
gation techniques, so that simulation methods are probably the
only relevant way to gain insight into physical mechanisms. What
make things difficult is that molten metals are extremely dense
and their viscosity very low, so that depending on the bubble size
and velocity, simulation methods should be effective for a very large
number of possible flow regimes. Numerical challenges consist in
preserving sharp interfaces, ensuring mass and momentum balance
with a realistic approach for coalescence or rupture phenomena.

Over the past 10 years a wide set of direct numerical methods has
been specifically designed to address those complex issues. Excel-
lent accuracy is generally achieved with surface tracking methods,
notably the front-tracking method (Unverdi and Tryggvason, 1992;
ll rights reserved.

fax: +33 2 32 53 64 68 (G.
8 (S. Vincent).
ianet), vincent@enscbp.fr (S.
Hua and Lou, 2007), the Level-Set methods (Osher and Fedkiw,
2003; Tanguy and Berlemont, 2005) or the Adaptative Lagrange Eu-
ler method (Yue et al., 2007). The marker-based surface tracking ap-
proach is a relevant strategy when simulating isolated droplets or
bubbles, with a restriction to flows with few vorticity sources there-
fore with few occurrences of interface breakup or merging. Those is-
sues can be addressed either manually or using complex sub-grid
models. Moreover Lagrangian techniques require dynamic re-mesh-
ing of the interfacial grid to prevent surface nodes or markers from
aggregating or rarefying. Level-Set methods are arguably best-suited
to handling breakup or merging but mass conservation and accuracy
are degraded when flows generate large interface distortion. It has
also been reported by Hua and Lou (2007) that volume control and
correction is necessary when using front-tracking approaches. Alter-
natively, Lagrangian tracking can also be performed on particles dis-
persed within a volume cell, this is the famous Particles in Cells
method (PIC, see Harlow and Welch, 1965) that overcome most of
the preceding difficulties, at the expense of very large computing
resources.

When preserving mass and assuming large interface disconti-
nuities becomes a critical issue, one can consider front-capturing
strategies in which interface position is described implicitly via
an Eulerian framework. This is the general Volume of Fluid (VOF)
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approach where a local phase volume fraction is introduced to cap-
ture interface. The reader is referred to the detailed report of recent
VOF approaches (see Gopala and van Wachem, 2008; Bonometti
and Magnaudet, 2007). The accuracy of VOF predictions is actually
lower than front-tracking accuracy when capillary effects are un-
der consideration, but VOF ability to deal with interface rupture
or coalescence and to preserve mass under large fluid distortion
makes it a good candidate for capturing grid-scale features of com-
plex two-phase flows. Drawbacks are related to three-dimensional
implementation which is quite difficult, and related to numerical
artifacts occurring when interface thickness is reduced below the
grid-scale. In that particular case, excessive breakage is a numeri-
cal artifact. Alternatively, interface tracking and VOF methods
could be used together and a fair amount of hybrid techniques
have been documented in literature, one can cite for example
front-tracking and VOF (Tryggvason et al., 2001), front-tracking
and Level-Set (Shin and Juric, 2002) or Level-Set and VOF (Bono-
metti and Magnaudet, 2007). These methods were accurately as-
sessed but drawbacks inherent to front-tracking or Level-Set are
still issues to be addressed. Accurate techniques were borrowed
from the phase-field approach, as shown by Jamet et al. (2001)
or in the work of Inamuro et al. (2004) from a Lattice-Boltzmann
formulation, but diffuse interface methods are generally too
smooth to consider disperse flow undergoing large velocity
gradients.

As aforementioned, our work was motivated by the prediction of
either compressible or incompressible gas injection in liquid sys-
tems with unusually high viscosity and density gradients, and large
fluid distortion. VOF–PLIC approaches are specially indicated in this
case as they are formally volume-preserving schemes, and geomet-
rically diffused only over a single cell length scale. Our view is that
any smoothing or regularizing operator on the VOF function will al-
ter those fundamental properties. It has been found instead that
using indirectly a smooth interface for calculating fluid characteris-
tics averaging and surface tension terms improves interface trans-
port by significantly reducing spurious currents and artificial
break-up. Concerning the underlying model framework, we have
used the 1-Fluid model developed by our team (see Vincent and Calt-
agirone, 1999, 2000; Caltagirone and Vincent, 2001) and inspired by
volume penalty methods in fictitious domains (Khadra et al., 2000)
and interface reconstruction (Scardovelli and Zaleski, 1999).

In the next section, the 1-Fluid model is briefly presented, then
in a more significant part it is described how the smoothing oper-
ator is used with different interpolation techniques. Section 2 in-
cludes a brief description of our strategy to cope with gas phase
compressibility. In the last subsection SVOF method is thoroughly
verified and compared to existing interface tracking methods. In
Section 3, a rigorous assessment procedure is summarized, that
firstly discriminates between the numerical parameters and inter-
polation schemes, and secondly demonstrates the convergence in
space of the best parameter set. Predictions from those optimized
settings are then compared to bubble shapes and velocity as de-
scribed in the experimental work of Bhaga and Weber (1981). Sec-
tion 4 is concerned with the global robustness of this approach,
experienced with an example application of two-dimensional gas
injection in liquid metal. Concluding remarks are addressed in
the last section.

2. Numerical method

2.1. Principles of the 1-Fluid model

The numerical modeling of two-phase flows involving sepa-
rated phases can be achieved with a 1-Fluid (1F) model (see Kat-
aoka, 1986; Scardovelli and Zaleski, 1999). The 1F approach
consists in integrating the interfacial jump conditions, valid at
the interface (Delhaye, 1974), into the Navier–Stokes equations,
valid in each phase. The integration is done by means of a convo-
lution and a spatial filtering of the momentum equations in each
phase. The resulting 1F model is similar to the single phase Na-
vier–Stokes equations, in which extra–terms have been added so
that local modifications of equations are included through local
viscosities lðx; y; z; tÞ, densities qðx; y; z; tÞ and surface tension
forces. In that sense, the 1F method has similarities with the ficti-
tious domain approach of Glowinski et al. (2001) and with the Im-
mersed Boundary Method of Peskin (1977).

Great advantages are found by using a single set of equations in
the whole calculation domain obtained by introducing a phase
function Cðx; y; z; tÞ as a local description of the fluid state, used
in order to follow the multiphase topology of the flow by solving
an advection equation. In this work the dispersed gas phase is
characterized by C ¼ 1 and the continuous phase by C ¼ 0. Inter-
face position is defined by C ¼ 0:5. Therefore it is possible to ex-
press the global properties of the mixture as functions of C,
namely the density q ¼ f ðCÞ and dynamic viscosity l ¼ gðCÞ. Very
few reference works exist that compare and demonstrate the right
form of f ðCÞ and gðCÞ. Such a form is obtained for example using
linear interpolation of characteristics: l ¼ llð1� CÞ þ lgC and
q ¼ qlð1� CÞ þ qgC, where the subscripts l and g represent, respec-
tively, the liquid or gas phases. Several numerical methods for
evaluating q ¼ f ðCÞ and l ¼ gðCÞ will be presented and discussed
later. This aspect is of major importance for the numerical simula-
tion of multiphase flows.

The final set of equations used to build the 1-Fluid model com-
prises the Navier–Stokes Eqs. (1), an advection equation on the
phase function (2), and the incompressibility constraint (3):

q
@u
@t
þ ðu � rÞu

� �
¼ qg�rpþr � ðlðruþrtuÞÞ þ Fst; ð1Þ

@C
@t
þ u � rC ¼ 0; ð2Þ

r � u ¼ 0; ð3Þ

where u is the local velocity field, t the time, p the pressure, g the
gravity field and Fst is the surface tension force. According to the
CSF model of Brackbill et al. (1992), forces due to capillarity can
be expressed in the following form:

Fst ¼ rjnidi; ð4Þ

where r is the surface tension coefficient, j the local curvature of
the interface, ni the normal to the interface and di is the Dirac func-
tion indicating interface. In this paper, the equation set (1)–(3) is
then referred to as the incompressible 1-Fluid model.

2.2. Penalty-based compressibility approach

Based on the incompressible model (1)–(3), a multiphase com-
pressible model for isothermal flows can be built (see Caruyer
et al., 2009), which takes into account the local volume dilatation
and compression effects under flow constraints. A specific diver-
gence term is added into the momentum equations and a modi-
fied mass conservation equation is introduced in this case. This
1F compressible model is correct under a low Mach number
assumption:

q
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where vT is the isothermal compressibility coefficient of the local
phase. vT can be either imposed or calculated from an equation of
state. Parameter s is a characteristic compression time scale. In
the context of this paper, all macroscopic scales are considered to
be fully captured following direct numerical simulation principles.
The smallest spatial scale is related to local pressure waves so that
s is assumed to be of the order of the simulation time scale Dt. Ratio
s=vT in Eq. (5) can be defined as a coefficient of resistance to com-
pression, similar to the compression viscosity coefficient k.

2.3. General computational methodology

Finite volume discretizations on fixed Cartesian grids are ap-
plied to approximate the conservation equations. Concerning the
resolution of both incompressible (1)–(3) and compressible (5)–
(7) Navier–Stokes equations, and in either case, for solving the
velocity–pressure coupling, the augmented Lagrangian method of
Fortin and Glowinski (1982) was used. In order to satisfy the fluid
incompressibility in the incompressible version of the 1F model,
the augmented Lagrangian method has been previously adapted
to multiphase flows (Vincent et al., 2004, 2007). All of the terms
appearing in Eq. (1) are spatially discretized via a second order
accurate centered scheme. A second order accurate Gear scheme
is implemented for the discretization of the time dependent term.
Implicit discretization of the momentum equations necessarily re-
quires the linearization of the convective term ðu � rÞu that takes
the form ðun � rÞunþ1. The resulting algebraic system is inverted
by the direct solver called MUMPS Amestoy et al. (2000).

The advection Eq. (2) is hyperbolic and is applied to a discontin-
uous Volume of Fluid function C. One numerical approach for solv-
ing this equation is the implementation of monotone Total
Variation Diminishing TVD (see Vincent and Caltagirone, 1999)
or Weighed Essentially Non-Oscillating WENO schemes of Jiang
and Shu (1996). Such schemes are able to handle correctly the high
gradients located on liquid–gas interfaces. They produce numerical
diffusion that is maintained over a few grid cells across the inter-
face. However, as soon as strong vorticity sources appear in the
flow motion, this numerical diffusion is increased and the interface
spreads over too many grid cells. This major drawback is avoided
using a different numerical technique for approximating Eq. (2):
the Piecewise Linear Interface Construction (PLIC) VOF method of
Youngs et al. (1982). This approach relies on a geometrical approx-
imation of the interface in each grid cell by linear or planar ele-
ments, which are advected in a Lagrangian way following the
local normal direction to the interface.

All the previous numerical methods have been extensively pre-
sented and validated in previous works by the authors (Vincent
and Caltagirone, 1999, 2000; Vincent et al., 2004, 2007, 2008).

2.4. Discrete surface tension models

The principle drawback of recent VOF methods is associated to
the generation of small artificial blobs occurring when the charac-
teristic lengthscale of interfaces is comparable to the local grid size.
Moreover, the discretization of the surface tension force requires
the approximation of second order partial derivatives of the VOF
function, whose gradients are conceptually restricted to one cell.
As a consequence, the compact support of the discrete surface ten-
sion force, which relies on centered schemes following the work of
Brackbill et al. (1992), is incomplete, since the VOF function only
varies on a single cell length-scale. As aforementioned in the intro-
duction section, our main idea lies in building an auxiliary Smooth
VOF (SVOF) function called CS, which will be obtained thanks to C,
but will not explicitly replace this sharp VOF function, in order to
keep the right mass conservation features brought by the PLIC
numerical algorithm of Youngs et al. (1982). However the SVOF
function should match the interface position, so that condition
CðMÞ ¼ 0:5 is met in the same cells as those in which
CSðMÞ ¼ 0:5 at a given position M. In this way, the averaging proce-
dures that are required to build q and l, will be based on CS and
will characterize the same fluid sub-domains as C. The SVOF aver-
aging and surface tension forces will be detailed in the next
sections.

The parameterization of the SVOF equation has been carried out
by analogy with the unsteady diffusion equation for thermal
transfers:

@T
@t
�r � arT ¼ 0; ð8Þ

considering a > 0 as the thermal diffusivity coefficient. It is known
that the diffusion length d is equal to

ffiffiffiffiffiffiffiffi
asd
p

, where sd is the charac-
teristic time scale of diffusion. Assuming a ¼ 1; sd, and d2 are of the
same order. By discretizing T in time, with n the time index corre-
sponding to time nDt and Dt the numerical time step, we obtain:

�r � sdrTnþ1 þ Tnþ1 ¼ Tn: ð9Þ

If Eq. (9) is solved N times, with 1 6 n 6 N � 1; sd ¼ NDt and the
initial temperature field T0 ¼ C, it is ensured that T diffuses on a
length equal to d and that T ¼ T0 far from the diffusion zone, i.e.
the zone where temperature gradients are zero.

By analogy with the previous thermal developments, the SVOF
method consists in building a smooth VOF function CS by itera-
tively solving a Helmholtz equation with the initial condition CS;0

equal to the sharp VOF function C:

�r � DrCS;nþ1 þ CS;nþ1 ¼ CS;n; ð10Þ

where the diffusion coefficient D is equal to LiDh2. This parameter is
fixed in order to ensure that the VOF function CS spreads over a dis-
tance Li on each side of the interface C ¼ 0:5. The coefficient Dh is
equal to the local characteristic size of the grid cell. From a numer-
ical point of view, Eq. (10) is implicitly discretized in space using fi-
nite volume conventions with a centered scheme, in such a way as
to be consistent with the Navier–Stokes equation approximation,
and the resulting linear system is solved with the direct MUMPS
solver of Amestoy et al. (2000). Finally, the numerical algorithm
for obtaining CS is:

F1 ¼ C; ð11Þ
For k ¼ 1 . . . N � 1; solve ð12Þ
� r � s�drCS;kþ1 þ CS;kþ1 ¼ Fk; ð13Þ
Fkþ1 ¼ CS;kþ1; ð14Þ

where s�d is defined as LiDh2
=N. After solving algorithm (12)–(14),

the condition CS ¼ CS;kþ1 ¼ CS;N is verified. An example of SVOF func-
tion obtained on a grid sample is presented in Fig. 1. This figure
compares functions C and CS. There it is demonstrated that isoline
CS ¼ 0:5 is smoother than C ¼ 0:5 and that the diffusion zone asso-
ciated to CS following the normal to the interface is of regular
thickness.

2.5. Comparison of SVOF method to existing interface tracking
methods

The ability of the SVOF method to handle accurately bubble or
droplet dynamics compared to existing interface tracking tech-
niques is investigated. The test case 1 from the benchmark proposed
by Hysing et al. (1999) is used to evaluate the performances of the
SVOF approach by comparison to numerical results from the
front-tracking method (see Shin and Juric, 2002) and the Level-Set
method (see Osher and Fedkiw, 2003; Trontin et al., 2008). The ini-
tial configuration of the problem is presented in Fig. 2.



Fig. 1. Comparison of VOF function C, and Smoothed VOF function CS .
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The fluid characteristics are the following: the density and the
dynamic viscosity in fluid 1 are 1000 kg m�3 and 10 Pa s whereas
these parameters are equal, respectively, to 100 kg m�3 and
1 Pa s in fluid 2. The gravity magnitude is 9:81 m s�2 according to
the vertical direction, and the surface tension coefficient is
24:5 N m�1.

Some qualitative comparisons of the interfacial position pro-
vided by SVOF, Level-Set and front-tracking methods at a time
t ¼ 3 s are proposed in Fig. 3. All numerical solutions are in good
agreement with the results from Hysing et al. (1999) obtained
using a Level-Set approach: the bubble shape is included in the
Fig. 2. Definition sketch of the benchmark proposed by Hysing et al. (1999).
range 0:15 < x < 0:85 and 0:9 < z < 1:3. However, small differ-
ences are observed: the front-tracking solution is smoother than
the Level-Set results and the Lagrangian interface tracking ap-
proach provides a slightly larger growing bubble velocity on the fi-
ner mesh than the SVOF and Level-Set techniques. As no analytical
solution exist for the bubble dynamics, it is difficult to choose a ref-
erence solution, even though the front-tracking solution is known
to be very accurate and efficient to account for capillary effects in
bubbly flows (Esmaeeli and Tryggvason, 1998).

Concerning the SVOF method, a good space and time conver-
gence is observed in Fig. 4. The C ¼ 0:5 contour level is plotted at
time t ¼ 3 s. In order to estimate the numerical performances of
the interface tracking methods, the error on volume conservation
Evol ¼

R
X Cðt ¼ 3 sÞdV �

R
X Cðt ¼ 0 sÞdV as well as the computa-

tional time obtained on an Intel Centrino processor are considered.
Fig. 3. Comparison of the front-tracking, Level-Set and SVOF methods on three
different grids (40� 80 in the top image, 80� 160 in the centered image and
160� 320 in the bottom image).



Fig. 4. Convergence of the interface provided by the SVOF method.

Fig. 5. Regime Map of rising bubbles as reported by Bhaga and Weber (1981), from
lowest to highest Re number: [S] Spherical (A1), [OE] Oblate Ellipsoid (A2), [OEC]
Oblate Ellipsoidal Cap (A4), [SKS] Skirted Steady (A7), [SKW] Skirted Wavy (A8),
[OED] Oblate Ellipsoidal (A3), [SCC] Spherical Cap Closed wake (A5), [SCO] Spherical
Cap Open wake (A6).
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Notation X refers to the computational domain. These values are
reported in Table 1.

Considering mass conservation which is evaluated by Evol, it is
observed that the SVOF method achieves the best results, this is
made clear as the grid level is refined. The front-tracking approach
comes in second place as the Level-Set achieves the worst results.
These observations are in agreement with the known numerical
behaviors of the front-tracking and Level-Set methods which do
not intrinsically maintain the mass conservation. It can be stressed
that the gap between the front-tracking and the SVOF methods is
small concerning volume error. But this is offset by the higher con-
sumption in time of the SVOF method, an overcost due to the solv-
ing of an implicit Helmholtz equation to build the smooth function
CS. The computational time is almost comparable between the
front-tracking and the Level-Set techniques. On the coarser grid,
the overcost of the SVOF is 31% compared to the front-tracking
method while this increase in time is reduced to 19% on the finest
mesh. The larger the computational grid, the smaller the gap be-
tween the SVOF and the front-tracking computational time will
be, as the time required to solve Navier–Stokes equations over-
comes other computational steps.

To finish with, a convergence order of the interface tracking
methods can be achieved by considering the decreasing of Evol

according to the number of computational nodes. The values ob-
tained with 80� 160 and 160� 320 grids are considered. It is ob-
served that Evol is divided by 3.6 with the SVOF method when the
space step Dx is divided by 2, which corresponds to a 1.85 conver-
gence order in space. For the Level-Set approach, Evol is reduced by
a factor 2.08 when Dx is divided by 2, which corresponds to a 1.06
convergence order in space. For the front-tracking method, Evol is
divided by 3.8 in the same conditions and a 1.93 space convergence
order is obtained.

3. SVOF assessment

3.1. Setup of numerical experiments

Buoyancy driven phenomena in gas–liquid flows are long-
standing research issues, this is why a large body of recent litera-
ture is still interested in characterizing the transient aspect of a
Table 1
Comparison of errors on volume and computational times for SVOF, Level-Set and front-tr

Grid Evol SVOF Time (s) SVOF Evol Level-Set

40� 80 1:51� 10�3 118 3:26� 10�2

80� 160 3:32� 10�4 898 1:36� 10�2

160� 320 9:21� 10�5 4314 6:54� 10�3
single gas bubble rising in viscous liquids. In this section, numeri-
cal predictions are compared to the experimental contribution
from Bhaga and Weber (1981). The main result consists in a com-
plete regime map reported in Fig. 5. The shape of one isolated bub-
ble depends upon Reynolds number Re ¼ qf dUt=lf and Bond
number Bo ¼ qf gUt=r, where qf and lf are the fluid density and
viscosity, d ¼ ð6Vb=pÞ1=3 the effective bubble diameter based on
bubble volume Vb;Ut the terminal bubble velocity and r the sur-
face tension between both phases. Recently, numerical prediction
from Hua and Lou (2007) confirmed that when physical parame-
ters satisfy ðRe < 200;Bo < 200Þ (see dashed box in Fig. 5), both
bubble shape and velocity field obey axial symmetry. Therefore
validations in two-dimensions are feasible in this particular range
and axisymmetry hypothesis is assumed in the present work if not
mentioned otherwise.

Domain size and aspect ratio relative to bubble size are fixed by
default in a way similar to the procedure from Hua and Lou (2007).
At time t ¼ 0, the bubble is a sphere of diameter d which is placed
2d away from the bottom, 10d away from the top and 4d away
from the side, as reported in Fig. 6. Eight different test-cases were
defined in order to match data from Bhaga and Weber (1981) (see
’A’ series plotted in Fig. 5). Density ratio q� ¼ qf =qg is fixed at 773,
dynamic viscosity ratio l� ¼ lf =lg is set between 1300 and
489400, and surface tension r is ranging from 6� 10�3 to
4:53� 10�1 N=m.
acking methods on three different grids.

Time (s) Level-Set Evol front-tracking Time (s) front-tracking

95 1:18� 10�3 90

761 4:56� 10�4 750

3852 1:20� 10�4 3620



Fig. 6. Conditions of numerical experimentation.
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3.2. Impact of physical characteristics averaging methods on bubble
dynamics

This section is concerned with the choice of interpolation func-
tions f ðCÞ and gðCÞ for estimating, respectively, density q and vis-
cosity l across the interface. The way of estimating average
density and viscosity at the interface neighborhood is somewhat
empirical and needs rigorous testing, and particularly as character-
istic gradients between gas and liquid are very high. Practically, the
interpolation scheme does rule the respective weight of gas and li-
quid into interfacial cells. As aforementioned, very few works have
been found in literature in which averaging techniques are de-
scribed and thoroughly assessed, even though they are used
widely. One can mention three common schemes for evaluating
f(C):

(i) discontinuous averaging:
f ðCÞ ¼ fg where C > 1=2; f ðCÞ ¼ fl elsewhere;
(ii) arithmetic averaging:
f ðCÞ ¼ fl � ð1� CÞ þ fg � C;
(iii) harmonic averaging:
f ðCÞ ¼ fl � fg=ðfl � ð1� CÞ þ fg � CÞ:

The logic about considering harmonic averaging as an alterna-
tive to discontinuous or arithmetic averaging have been discussed
in a former work by Ritz and Caltagirone (1999). Using different
schemes for density and viscosity yield many potential combina-
tions. We have reduced the number of possibilities to a set of four
methods that are commonly used in multiphase flow solvers.
These are, respectively, M1 : discontinuous for both density and
viscosity, M2 : arithmetic averaging for both density and viscosity,
M5 : arithmetic averaging for density and harmonic averaging for
viscosity, and finally M7 : arithmetic averaging for density, arith-
metic averaging when using diagonal components of the viscous
stress tensor, and harmonic averaging when using extradiagonal
components of the viscous stress tensor. Obviously, using har-
monic averaging for q ¼ f ðCÞ is physically meaningless, and the
additive property of density is perfectly suited to linear interpola-
tion. Fig. 7 summarizes the terminal bubble shape predicted with
those four methods in comparison to experimental and front-
tracking simulation results from literature.

Table 2 presents terminal bubble velocities with corresponding
error levels in comparison to experimental velocities. The best over-
all results have been achieved with the linear interpolation for both
density and viscosity (M2). This technique combined with interface
smoothing for capillarity exhibits excellent agreement with both
experimental and front-tracking simulation results. Arithmetic
averaging on viscosity yields non physical surface tension features,
made clear from cases A1 + M5, A2 + M5, and A3 + M5. One prob-
lematic artifact is highlighted along the symmetry axis when using
methods M5 or M7, as the interface presents a non physical angle
inducing over-estimated terminal velocities. The M1 technique is
globally relevant considering general shapes and terminal velocities,
but discontinuous averaging techniques clearly increase the numer-
ical fragmentation of the interface. Special situations of spherical
cap shaped bubbles are notably complicated to simulate, as the bub-
ble vertical thickness almost vanishes during its acceleration so that
a subresolved gas layer on the bubble axis makes it split into toroidal
bubbles instead. A5 cases are generally stable with our method but
non-negligible fragmentation into secondary macro-bubbles are
eventually observed. A6 cases have been obtained from one ellipsoi-
dal starting shape but produced very unstable results in general.
Consequently, M2 models will be used in this work, as a very good
physical consistency is achieved. Moreover, the combination of
VOF–PLIC, M2 averaging and interface smoothing for capillarity,
exhibits excellent interface cohesion as very little numerical frag-
mentation is observed compared to other combinations.

3.3. Convergence in space of SVOF, Test-Case A3 [Re = 79.9, Bo = 32.2]

Test-Case A3 has been chosen for testing spatial accuracy of
those optimized settings and estimating a priori how many nodes
are required to achieve good predictions. Simulations are per-
formed with increasing accuracy in space readily defined as
d=Dx ¼ 13;25;50;100; and 200 where Dx is the unit grid size ex-
pressed in meters. For comparison, results from the front-tracking
simulations of Hua and Lou (2007) are considered to be converged
starting from d=Dx ¼ 25 grid points. It is found that VOF–PLIC sim-
ulations do not converge exactly to the experimental value
(Ut ¼ 2:9� 10�1 m=sÞ but to a value that is about 3% smaller. How-
ever, experimental error level on velocity is estimated to be 3.5% by
the authors (Bhaga and Weber, 1981) so that SVOF result is within
error bar. Small deviations from experimental values may be due
to perturbations related to the numerical management of the sym-
metry axis. It can explain why the bubble thickness is somewhat
overestimated, as seen in Fig. 7. We still have to check the same
case in a fully three-dimensional framework to address this issue,
knowing that no perturbations were noticed in two-dimensions.
For demonstrating convergence in space, we use the Richardson’s
extrapolation technique (see Roache, 1998) in which the value of
reference is calculated from the finest grid level simulation result.
A very clear convergence in space of order 1.2 is shown in Fig. 8,
showing that most physical features are captured efficiently by
SVOF.



Fig. 7. Terminal bubble shape for M2, M1, M5, and M7 averaging methods. Comparison to (i) experiments of Bhaga and Weber (1981) and (ii) front-tracking simulations of
Hua and Lou (2007).

Table 2
Terminal bubble rising velocity for M2, M1, M5, and M7 averaging methods. Comparison to the experimental values UExp from the work of Bhaga and Weber (1981).

Test-Case Run# Interpolation U1F ðm s�1Þ UExp ðm s�1Þ Error (%) Best overall

A1 71 M1 0.0364 0.0353 3.1
– 51 M2 0.0356 – 0.8 �
– 81 M5 0.0573 – 62.4
– 91 M7 0.0418 – 18.4

A2 72 M1 0.0613 0.0615 0.3
– 52 M2 0.0599 – 2.6 �
– 82 M5 0.0890 – 44.7
– 92 M7 0.0705 – 14.6

A3 73 M1 0.3139 0.3066 2.3
– 53 M2 0.3031 – 1.1 �
– 83 M5 0.3132 – 2.1
– 93 M7 0.3103 – 1.2

A4 74 M1 0.2465 0.2258 9.1
– 54 M2 0.2379 – 5.3 �
– 84 M5 0.2858 – 26.5
– 94 M7 0.2804 – 24.2

A5 75 M1 0.3144 0.3093 1.7
– 55 M2 0.2908 – 10.2 �
– 85 M5 0.2280 – 26.3
– 95 M7 0.2999 – 3.0

A7 77 M1 0.2877 0.2629 9.5
– 57 M2 0.2774 – 5.5 �
– 87 M5 0.3236 – 23.1
– 97 M7 0.3185 – 21.2

A8 78 M1 0.3016 0.2699 11.7
– 58 M2 0.2903 – 7.5 �
– 88 M5 0.3373 – 24.9
– 98 M7 0.3411 – 26.4
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Fig. 8. Convergence in space of Test-Case A3 based on reference terminal bubble
velocity value Ut ¼ 2:9� 10�1 m=s calculated with Richardson’s extrapolation
technique Roache (1998). Spatial discretization is defined successively as
d=Dx ¼ 13;25;50;100; and 200 grid points.

Fig. 9. Definition sketch for two-dimensional simulation of gas injection into cold
liquid alloy. All dimensions are in millimeters.
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4. Gas injection in liquid alloy: effect of gas compressibility

4.1. Dynamics of a single compressible gas bubble

Obviously, the first issue one should address is the effect of gas
compressibility on isolated bubbles as those described in the pre-
vious section. Since very realistic predictions were obtained using
the incompressible gas phase, it is therefore necessary to achieve
the same level of accuracy or better within the compressible
framework. After activating compressibility, one found that stabi-
lized bubbles are very similar in shape. Results are summarized
in Table 3 where the previous accuracy is shown to be globally re-
spected and slightly improved. The initial volume is shown to be
preserved, whereas bubble volume appears to be growing in both
cases for increasing Reynolds numbers. With the present numeri-
cal approach, the incompressible gas phase is treated like a weakly
compressible phase, so that the volume change is negligible, but
non-zero. Such a feature is not related to the VOF–PLIC algorithm,
but to the number of iterations set for the augmented Lagrangian
algorithm, so that much better results could be achieved at the ex-
pense of higher computation times. Unsurprisingly, the change in
Table 3
Simulation error levels based on terminal bubble rising velocity UExp as measured by Bhaga
(see Fig. 1), target bubble velocity. Error levels achieved with incompressible front-tracking
change in gas volume for incompressible and compressible SVOF methods on 600� 200 g

Test-Case A1 A2 A3 A

Shape S OE OED O
Bo 8.67 17.7 32.2 2
Re 0.98 1.67 79.9
UExp ðm s�1Þ 0.0353 0.0615 0.307

eFront-tracking ð%Þ 9.63 9.25 4.23
eSVOF=incomp ð%Þ 0.8 2.6 1.1
eSVOF=compð%Þ 0.8 2.9 0.6
DVolume=incomp ð%Þ 0.14 0.17 1.85
DVolume=comp ð%Þ 0.25 0.28 1.95
bubble volume is greater in the compressible framework, but the
difference is globally small. As a conclusion the incompressibility
hypothesis is relevant as long as the bubble rising path remains
short. With larger distances, changes in static pressure are no long-
er negligible, and the compressible framework is a more relevant
approach.

4.2. Example application: dynamics of compressible gas bubbles
injected in liquid alloys

The example application presented in this section involves all
physical issues for which the SVOF method has been designed:
strong gradients on liquid-gas interface, multiple interface breakup
and coalescence with surface tension effects, gas compressibility
effects, and unusually high density and viscosity ratios across the
interface. The target application relies on controlling the flow of
liquid metals using gas injection techniques. The underlying chal-
lenge is first to predict bubbling to jetting transitions, then to use
these results to achieve a better control of jet penetration. In its
and Weber (1981). Target bubble shape as a function of Bond and Reynolds numbers
method (Hua and Lou, 2007) on 300� 100 grids ðd=Dx ¼ 13Þ. Error levels and relative
rids ðd=Dx ¼ 25Þ.

4 A5 A6 A7 A8

EC SCC SCO SKS SKW
43 115 237 339 641
15.24 134.6 357.0 30.83 49.72

0.226 0.309 0.321 0.263 0.270

8.07 5.64 Unstable 2.12 1.22
5.3 10.2 – 5.5 7.5
5.0 10.1 – 0.9 2.8
1.10 3.65 – 1.45 1.76
1.18 3.77 – 1.51 1.81



Fig. 10. Injection of gas bubbles into liquid metal. qgas ¼ 2½ kg m�3�;qliquid ¼ 6360½ kg m�3�;lgas ¼ 2;26� 10�5½Pa s�;lliquid ¼ 1:89� 10�3½Pa s�. Compressible gas phase (a),
incompressible gas phase (b). Snapshots of two-phase flow at times 0.5 s, 1 s, 2 s, 3 s, 4 s and 5 s. Gas phase (white level), contours of vorticity magnitude (grey levels).

1 See Animation 1: ‘incompressible gas injection into liquid metal’, and Animation
2: ‘compressible gas injection into liquid metal’.
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present state, our work has focused on subjecting the simulation
method to the same physical constraints as those observed exper-
imentally (work still in process) but in two-dimensions, as a funda-
mental step prior to large-scale three-dimensional simulations
that are planned in a near future. To this end, a virtual gas injection
testing device has been designed (see Fig. 9). The testing configura-
tion was set as a 16 cm high� 6 cm wide vessel. Gas is injected lat-
erally through a horizontal pipe of internal diameter 3 mm which
ends 3 cm away from the vessel’s bottom and 2 cm away from
the left wall. In order to achieve stable simulations in the case of
incompressible gas injection, the vessel’s top wall has been given
a specific shape so as to collect rising bubbles and evacuate them
through a 3 mm orifice. Physical characteristics are defined so that
the liquid-to-gas density ratio is about 3500 and the liquid-to-gas
viscosity ratio 84. As mentioned in Fig. 9, a porous medium model
of finite permeability K ¼ 1� 10�15 m2 is used in the injection pipe
and in the evacuation tip as well, because it prevents the liquid
metal, much heavier than gas, from drawing back into the capillary
pipe since this always results in numerical failure. To our knowl-
edge, this technique is of common use in various engineering
applications for ensuring a steady gas flux (Nakai et al., 1985; Ca-
hill, 2005). The input boundary condition is adjusted so as to re-
cover injection velocity from one three-dimensional system of
similar size in which gas flow-rate is 10 cm3=min and pipe diame-
ter is 3 mm. The Cartesian simulation grid size is 300� 800, so that
Dx ¼ 0:2 mm. All simulations presented in this paper have been
performed with a MPI parallelized code executed on eight proces-
sors, using a Linux cluster of quad-core 3 GHz Intel Xeon bi-proces-
sors. Simulations for both compressible and incompressible gas
injection are performed and compared on Fig. 10. The gas phase
is colored in white, grey levels represent magnitude of fluid vortic-
ity. Two corresponding animations are proposed as supplemental
multimedia files1.

The release frequency is about five bubbles per second and
there is no major differences of bubble size or velocity between
the incompressible and compressible approaches, at least during
the early stage of simulations. For information purposes, prelimin-
ary experimental observations for an equivalent bubble release fre-
quency estimates the mean two-phase flow vertical velocity at
’ 0:1 m s�1 in the bubble plume. In our simulations, the peak Rey-
nolds number based on bubble size is Re ¼ 4000. The Bond number
is Bo K 8 and the Weber number that can be used in three-dimen-
sions to predict bubble fragmentation is We ¼ qf U

2
t d=rK 2. The

upper Re limit is roughly estimated using the maximum bubble
velocity Ub ’ 0:15 m s�1. In practice our simulations predict that
the mean two-phase flow regime is notably lower, say Re K 2000
since bubbles evolve in a non-quiescent velocity field. This is a
transitional flow regime where energy is dissipated by large vorti-
ces, it is made clear in Fig. 10 where vorticity visualization reveals
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large-scale structures generated in bubble wakes. Our results were
calculated using direct numerical simulation but further work in
the near future will necessarily involve Large Eddy Simulation
(LES) techniques with specific turbulent two-phase LES terms pre-
sented in a recent work (Vincent et al., 2008).

From Fig. 10 one can note strong interactions between isolated
pairs of bubbles, as the wake of a rising bubble induces a drifting
effect on the following one, this is made clear particularly in the
compressible case in which energy dissipation is more efficient
and the bubble plume is consequently more stable. Energy dissipa-
tion confined in two-dimensions and subjected to wall contain-
ment have a major impact on bubble dynamics over long
periods. Dissipation is much less efficient in the incompressible
case, this is made clear in Fig. 10 as the bottom part of the domain
exhibits important vorticity traces compared to the compressible
case. Obviously, the excess of energy is contributing to a larger
interface fragmentation, the distinction is in evidence after 4 s of
simulation. Moreover, some of the smallest interface fragments
are not advected by VOF and act as parasitic obstacles that degrade
the global flow behavior. Those qualitative observations provide
many indications to be considered in future three-dimensional
simulations. It was made clear that considering gas compressibility
reduces VOF numerical fragmentation and improves the simula-
tion stability. Analogous simulations using VOF–PLIC with unpro-
cessed surface tension and characteristic averaging are unable to
converge due to excessive numerical fragmentation. Containment
does have a major effect on bubble dynamics. Constrained fluid
structures have a long lifetime due to the low viscosity of liquid
metal. As a consequence, results show strong interactions between
persistent fluid structures and bubbles, so that larger simulation
domains are required to obtain a regular bubble plume with a stea-
dy injection and globally isotropic liquid drifting.
5. Concluding remarks

This work is the preliminary step of an ambitious project that is
intended to predict and control gas injection into molten metals.
This objective was partially fulfilled, as an original computational
method has been designed and presented as one of the few opera-
tional simulation tools with the ability to handle two–phase flows
with surface tension effects, compressibility effects, large density
and viscosity contrasts. Benchmark verifications and comparison
to popular interface tracking methods has proven the SVOF ability
to preserve volume during interface advection in a much better
way, affording a reasonable overcost. The predictions of the SVOF
method has been successfully validated in two-dimensions against
experimental and numerical methods for the dynamic of isolated
gas bubbles evolving in an axisymmetric referential. Taking into
account the effect of gas compressibility globally improved the
accuracy of simulations. The method has been shown to be partic-
ularly stable when coping with strong interfacial distorsion and
strong gradient of material properties met in gas/liquid metal mul-
tiphase systems. Work in the near future is intended to compare
three-dimensional DNS/LES simulations and original X-ray radio-
scopic imaging of gas injected into cold liquid alloy.
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